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Abstract

Grid computing is becoming the natural way to aggregate and share large sets of heterogeneous re-
sources. With the infrastructure becoming ready for the challenge, current grid development and accep-
tance hinge on proving that grids reliably support real applications, and on creating adequate benchmarks
to quantify this support. However, grid applications are just beginning to emerge, and traditional bench-
marks have yet to prove representative in grid environments. To address this chicken-and-egg problem,
we propose a middle-way approach: create and run synthetic grid workloads comprising applications
representative for today’s grids. For this purpose, we have designed and implemented GrenchMark, a
framework for synthetic workload generation and submission. The framework greatly facilitates synthetic
workload modeling, comes with over 35 synthetic and real applications, and is extensible and flexible. We
show how the framework can be used for grid system analysis, functionality testing in grid environments,
and for comparing different grid settings, and present the results obtained with GrenchMark in our
multi-cluster grid, the DAS.
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Abstract

Grid computing is becoming the natural way to aggregate and share large sets of heterogeneous re-
sources. With the infrastructure becoming ready for the challenge, current grid development and accep-
tance hinge on proving that grids reliably support real applications, and on creating adequate benchmarks
to quantify this support. However, grid applications are just beginning to emerge, and traditional bench-
marks have yet to prove representative in grid environments. To address this chicken-and-egg problem,
we propose a middle-way approach: create and run synthetic grid workloads comprising applications
representative for today’s grids. For this purpose, we have designed and implemented GrenchMark, a
framework for synthetic workload generation and submission. The framework greatly facilitates synthetic
workload modeling, comes with over 35 synthetic and real applications, and is extensible and flexible. We
show how the framework can be used for grid system analysis, functionality testing in grid environments,
and for comparing different grid settings, and present the results obtained with GrenchMark in our
multi-cluster grid, the DAS.

1 Introduction

In the long term, Grid computing systems (Grids) aim at becoming the standard way of sharing heteroge-
neous resources, and of aggregating them into virtual platforms, to be used by multiple organizations and
independent users alike. With the grid infrastructure starting to meet the requirements of such an ambitious
goal [2], the current evolution of grids hinges on proving that it can run real applications, from traditional
sequential and parallel applications to new, grid-only, applications. As a consequence, there is a clear need
for generating and running workloads comprising grid applications for demonstration and testing purposes.

In this paper we present GrenchMark, a framework for synthetic workload generation and submission.
With GrenchMark, we try to find a common ground for grid performance analysis and, in the flavor of the
Parallel Workloads Archive1, we offer the performance-oriented Grid community a tool that can help to bring
together Grid performance evaluation approaches, towards the goal of building standard Grid benchmarks.
Our main contributions are:

• A systematic approach to and a set of tools for generating synthetic grid workloads for analyzing,
testing, and comparing common grid settings (Sections 2 and 4);

• Modeling and selecting a set of representative real and synthetic grid applications (Section 3), including
applications that require co-allocation (Section 3.2).

• An experimental validation of our approach (Sections 5 and 6). In our setting, we use a multi-cluster
environment, the DAS [1], the Koala2 co-allocating grid scheduler [10], and the real applications
included in the Ibis3 Java-based Grid programming environment [14].

2 A Case for Synthetic Grid Workloads

There are three ways of evaluating the performance of a grid system: analytical modeling, simulation, and
experimental testing. This section presents the benefits and drawbacks of each of the three, and argues for
evaluating the performance of grid systems using synthetic workloads, one of the two possible approaches
for experimental testing.

2.1 Analytical Modeling and Simulations

Analytical modeling is a traditional method for gaining insights into the performance of computing systems.
Analytical modeling may simplify what-if analysis for changes in the system, in the middleware, or in the
applications. However, the sheer size of grids and their heterogeneity make realistic analytical modeling
hardly tractable.

1The Parallel Workload Archives makes various workload traces from real parallel production environments available at
http://www.cs.huji.ac.il/labs/parallel/workload/

2Koala is developed at TU Delft, NL; more information about Koala is available at http://www.st.ewi.tudelft.nl/koala/.
3Ibis is developed at VU Amsterdam, NL, and is freely available from http://www.cs.vu.nl/ibis/.
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Simulations may handle complex situations, sometimes very close to the real system. Furthermore,
simulations allow the replay of real situations, greatly facilitating the discovery of appropriate solutions.
However, simulated system size and diversity raises questions on the representativeness of simulating grids.
Moreover, nondeterminism and other grid-specific forms of hidden dynamic behavior make the simulation
approach even less suitable.

2.2 Experimental Testing

There are two ways to experimentally assess the performance of grid systems: benchmarking and using
synthetic grid workloads. Note that current grids evolution prevent the use of traces of real grid workloads:
the infrastructure changes too fast, leading to incompatible resource requests when re-running old traces.
However, well-studied traces from production environments may be used for what-if analysis, for example
to show that a parallel production machine can be replaced by a grid environment.

Benchmarking is typically used to understand the quantitative aspects of running grid applications and
to make results readily available for comparison. Benchmarks comprise a set applications representative for
a class of systems, and a set of rules for running the applications as a synthetic system workload. Therefore,
a benchmark is a single instance of a synthetic workload.

Benchmarks present severe limitations, when compared to synthetic grid workloads generation. They
have to be developed under the auspices of an important number of (typically competing) entities, and can
only include well-studied applications. Putting aside the considerable amounts of time and resources needed
for these tasks, the main problem is that grid applications are starting to develop just now, typically at the
same time with the infrastructure [12], thus limiting the availability of truly representative applications for
inclusion in standard benchmarks. Other limitations in using benchmarks for more than raw performance
evaluation are:

• Benchmarking results are valid only for workloads truly represented by the benchmark’s set of applica-
tions; moreover, the number of applications typically included in benchmarks [8, 13] is typically small,
limiting even more the scope of benchmarks;

• Benchmarks include mixes of applications representative at a certain moment of time, and are no-
toriously resistant to include new applications; thus, benchmarks cannot respond to the changing
requirements of developing infrastructures, such as grids;

• Benchmarks make difficult either the evaluation of one particular system characteristic (high-level
benchmarks), or the evaluation of a mix of characteristics (low-level benchmarks);

An extensible framework for generating and submitting synthetic grid workloads uses applications rep-
resentative for today’s grids, and enables the addition of future grid applications. This approach can help
overcome the aforementioned limitations of benchmarks. First, it offers better flexibility in choosing the
starting applications set when compared to benchmarks. Second, applications can be included in generated
workloads, even when they are in a debug or test phase. Third, the workload generation can be easily
parameterized, to allow for the evaluation of one or a mix of system characteristics.

2.3 Purposes of Synthetic Grid Workloads

We further present five reasons for using synthetic grid workloads.

a. System design and procurement Grid architectures offer many alternatives to their designers, in the
form of hardware, of operating software, of middleware (e.g., a large variety of schedulers), and of
software libraries. When a new system is replacing an old one, running a synthetic workload can show
whether the new configuration performs according to the expectations, before the system becomes
available to users. The same procedure may be used for assessing the performance of various systems,
in the selection phase of the procurement process.

b. Functionality testing and system tuning Due to the inherent heterogeneity of the grids, complicated
tasks may fail in various ways, for example due to misconfiguration or unavailability of required grid

Wp 5 http://www.pds.ewi.tudelft.nl/∼iosup/
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middleware. Running synthetic workloads, which use the middleware in ways similar to the real
application, helps testing the functionality of the grids and detecting many of the existing problems.

c. Performance testing of grid applications With grid applications being more and more oriented toward
services or components, early performance testing is not only possible, but also required. The produc-
tion cycle of traditional parallel and distributed applications must include early testing and profiling.
These requirements can be satisfied with a synthetic workload generator and submitter.

d. Comparing grid components Grid middleware comprises various components, e.g., resource schedulers,
information systems, and security managers. Synthetic workloads can be used for solving the require-
ments of component-specific use cases, or for testing the Grid-component integration.

e. Building runtime databases In many cases, getting accurate information about an application’s runtime
is critical for further optimizing its execution. For many scheduling algorithms, like backfilling, this
information is useful or even critical. In addition, some applications need (dynamic) on-site tuning of
their parameters in order to run faster. The use of historical runtime information databases can help
alleviate this problem [11]. An automated workload generator and submitter would be of great help
in filling the databases.

In this paper we show how GrenchMark can be used to generate synthetic workloads suitable for these
five goals.

3 A Model for Synthetic Grid Workloads

This section presents a model for synthetic grid workloads.

3.1 Grid site and machine model

We assume grid systems comprising several computing sites. Sites are provided and maintained by individuals
or institutions, and are dedicated to grid usage. Sites may have different usage policies, e.g., one site may
dedicate 100% resources for running its local users’ jobs, and only share the resources to the global grid
community if no such jobs exist, while, at the other extreme, another site may offer all its resources at any
time to anybody belonging to the global grid community, without discriminating between local and remote
users.

Each site contains several computing resources, e.g., a site is a cluster of resources. Resources can be
computational and storage resources or both at the same time. On each site, there is only one gateway (a
machine used as an entry point to the system, from which jobs can be launched and files can be transferred
to and from the cluster).

3.2 Grid applications model

In our model, we consider two types of applications that can run in grids, and may be included in synthetic
grid workloads.

3.2.1 Unitary applications

This category includes single, unitary, applications. At most the job programming model must be taken
into account when running in grids (e.g., launching a name server before launching an Ibis job). Typical
examples include sequential and parallel (e.g., MPI, Java RMI, Ibis) applications.

3.2.2 Composite applications

This category includes applications composed of several unitary or composite applications. The grid scheduler
needs to take into account issues like task inter-dependencies, advanced reservation and extended fault-
tolerance, besides the components’ job programming model. Typical examples include bags of tasks, chains of

Wp 6 http://www.pds.ewi.tudelft.nl/∼iosup/
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Figure 1: Composite applications generated with GrenchMark: (a) randomly generated bag of jobs;
(b) randomly generated chain of jobs; (c) DAG-based workflow generated with a random method from
the Standard Task Graph Set (http://www.kasahara.elec.waseda.ac.jp/schedule/); (d) DAG-based
workflow generated from the SPEC benchmark fpppp, included in the Standard Task Graph Set.

tasks, DAG-based applications, and applications based on generic graphs (see Figure 1 for sample composite
applications generated with GrenchMark).

We also consider in our model the notion of co-allocation: the simultaneous allocation of resources located
in different grid sites to single applications which consist of multiple components. The components of co-
allocated jobs usually interact with each other (e.g., consider the case of a tightly-coupled parallel application
which happens to run on resources located in several grid sites). Unitary and composite jobs can both be
co-allocated.

3.3 Grid workloads model

We argue that many of the potential Grid users are current HPC users, or are currently running large
batches of jobs. For many working environments, and especially for the DAS, the amount of sequential jobs
is significant or even dominant. Therefore, unitary applications with sequential or parallel structure, and
composite applications with bag of tasks structure are to be preferred when creating grid workloads.

The workload structure is built using well-known statistical distributions for modeling resource require-
ments, with values extracted from real traces or selected from sets pre-defined by the workload designer.
Jobs arrive dynamically in the system, and the inter-arrival time of the majority of jobs can be modeled
with a statistical distribution. Jobs arrival can also be bursty, that is, many jobs may arrive in a very short
time interval.

4 The Grenchmark framework

This section presents the Grenchmark framework.

4.1 Overview

GrenchMark is a synthetic grid workload generator and submitter. It is extensible, in that it allows new
types of grid applications to be included in the workload generation, parameterizable, as it allows the user
to parameterize the workloads generation and submission, and portable, as its reference implementation is
written in Python.

The workload generator is based on the concepts of unit generators and of job description files (JDF)
printers. The unit generators produce detailed descriptions on running a set of applications (workload unit),
according to the workload description provided by the user. In principle, there is one unit for each supported
application type. The printers take the generated workload units and create job description files suitable
for grid submission. In this way, multiple unit generators can be coupled to produce a workload that can be
submitted to any grid resource manager, as long as the resource manager supports that type of applications.

The grid applications currently supported by GrenchMark are sequential jobs, jobs which use MPI,
and Ibis jobs. GrenchMark includes a set of over 35 synthetic and real applications. We have implemented
four synthetic applications: sser, a sequential application with parameterizable computation and memory
requirements, sserio, a sequential application with parameterizable computation and I/O requirements,
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smpi1, an MPI application with parameterizable computation, communication, memory, and I/O require-
ments, and swf, an application implementing the job model used in the Standard Workloads Format, from
the Parallel Workloads Archives (PWA). We use all the real applications and some of the synthetic applica-
tions included in the default Ibis distribution package. The reason is threefold: the Ibis applications closely
resemble or are real-life parallel applications, they have been proven to run on a variety of grid settings, and
they have been thoroughly described4. The Ibis applications come from the areas of physical simulations,
parallel rendering, computational mathematics, state space search, bioinformatics, data compression, grid
methods, and optimization. Currently, GrenchMark can submit jobs to Koala, Globus GRAM, and
Condor.

The workload submitter generates detailed reports of the submission process. The reports include all job
submission commands, the turnaround time of each job, including the grid overhead, the total turnaround
time of the workload, and various statistical information.

4.2 Replaying traces with GrenchMark

GrenchMark can replay traces from various production environments. First, the user can load traces in
the Standard Workload Format. Second, since a real trace contains tens of thousands of jobs, filtering out
jobs and selecting the first-N jobs according to various criteria is essential for selecting a usable workload;
GrenchMark can be used to shape and fit a real workload trace. Third, real traces cannot usually be
replayed on another system than the one on which they were acquired, and even on the same system if it
has changed. The latter happens more often in the case of grids, which are naturally evolving with their
middleware, and therefore are very dynamic. GrenchMark can scale various aspects of the workload, e.g.,
the requested resources, or the job runtimes, and can help alleviate this problem [6].

4.3 Modeling workloads with GrenchMark

GrenchMark offers support for the following workload modeling aspects. First, it supports unitary and
composite applications, and single-site and co-allocated jobs. Second, it allows the user to define various
job inter-arrival times based on well-known statistical distributions. Besides the Poisson distribution, used
traditionally in queue-based systems simulation, GrenchMark also supports uniform, normal, exponential
and hyper-exponential, Weibull, log normal, and gamma distributions. Third, it allows the workload designer
to combine several workloads into a single one (mixing). This allows for instance the inclusion of bursts, by
combining a short workload with many jobs per time unit with a longer one, comprising fewer jobs per time
unit. An additional use of workload mixing is in a what-if analysis that evaluates what will happen to a grid
community if its resources would be shared with another group of users. In this case, the workload modeler
can mix the typical workload of the two communities and evaluate whether the system can support both,
under various job acceptance and execution policies.

4.4 The GrenchMark process

We define two use cases for the GrenchMark framework: in real world and in simulations. A workload
generated by GrenchMark using only synthetic and well studied applications can be equally used in both
cases.

Figure 2 depicts the typical process of using the GrenchMark framework in a real environment. First,
the user describes the workload to be generated, as a formatted text file (1). Based on the user description,
on the known application types, and on information about the grid sites, a workload is then generated by
GrenchMark (2), and submitted to the grid (3). The grid environment is responsible for executing the
jobs and returning their results (4). The results include not only job outcomes, but also detailed submission
reports. Finally, the user processes all results in a post-production step (5). The use of GrenchMark for
simulations is similar, with steps (3) and (4) possibly combined.

The most difficult step in using GrenchMark is step (1): describing the workload. To ease this task, we
have designed a simple and extensible language; the workload designer is only concerned with the difficulty
of designing representative workloads, rather than how to describe them. Figure 3 shows the workload

4For the complete list of publications related to Ibis applications, please visit http://www.cs.vu.nl/ibis
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Figure 2: The GrenchMark process.

# File-type: text/wl-spec
#Jobs Type SiteType Total SiteInfo ArrivalTimeDistr OtherInfo
25   sser   single 1 *:? Poisson(120s)  StartAt=0s
25   sserio single 1 *:? Poisson(120s)  StartAt=60s
25   smpi1  single 1 *:? Poisson(120s)  StartAt=30s,ExternalFile=smpi1.xin
25   smpi1  single 1 *:? Poisson(120s)  StartAt=90s,ExternalFile=smpi2.xin

Figure 3: A GrenchMark workload description example.

SiteTypesWithWeights=nonfixed/30;fixed/50
SitesWithWeights=fs1;fs2;fs3;fs4
NComponentsWithWeights=1/50.0;3/16.2;5/5.0;10;15;2/10.0;4/10.0;8
TotalCPUsWithWeights=2/20.0;4/30.0;5;8;10;16;20;32
...

Figure 4: A GrenchMark workload specification language extension.

description for generating the gmark+ test, comprising 100 jobs of four different types. The first two lines are
comments. The next two lines are used to generate sequential jobs of types sser and sserio, with default
parameters. The final two lines are used to generate MPI jobs of type smpi1, with parameters specified
in external files smpi1.xin and smpi2.xin. All four job types assume an arrival process with Poisson
distribution, with an average rate of 1 job every 120 seconds. The first job of each type starts at a time
specified in the workload description with the help of the StartAt tag. For MPI jobs, the specified external
file (tag ExternalFile) contains other application-specific parameters (see also Section 4.5 and Figure 4).

4.5 Extending the GrenchMark framework

GrenchMark has been designed with an incremental approach in mind, and facilitates future extensions.
The framework design can be easily extended, for instance by adding various workload generation notions
(e.g., users, virtual organizations). GrenchMark also offers a simple plug-in system, which can be used
to add unit generators (new application types) and printers (support for other grid resource managers).
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Another way the user can extend the workload generation process is to define a more refined workload
specification language and use it from an already existing plug-in; the only requirement is that the extension
language is based on Key=Value statements. A file written in an extension language is automatically parsed,
and the data is available to the user when the plug-in is invoked. GrenchMark further offers mechanisms
to parse simple values (e.g., booleans, strings, integers, and floats), and more complicated constructs
(e.g., lists, and lists with weights). Figure 4 shows an example of a file written in an extended language, for
generating a workload with co-allocated jobs. Line 1 defines the type of co-allocated jobs to be generated
as a list with weights; nonfixed jobs (multi-site jobs with unspecified execution sites) have a lower weight
than fixed jobs (multi-site jobs with specified execution sites). Line 2 defines the possible execution sites, as
a list with weights. A default weight of 1.0 is automatically assigned to the elements for which the user has
not specified the weight. Lines 3 and 4 use lists with weights to define the number of components and the
number of processors for generated jobs. Jobs with 1 component and 4 processors are preferred.

5 Experimental setup

We used the DAS system5 as an experimental environment. The DAS system comprises 5 clusters, with
32 up to 72 dual-processor SMP nodes each. A shared file system (NFS) is used within each cluster. Each
cluster has one entry point (gateway), on which users can log and submit jobs, or retrieve their jobs’ output.
The DAS system does not discriminate between local and remote users, but has different resource allocation
policies depending on the jobs’ requested runtimes.

GrenchMark was used to generate and submit the workloads. We used both modeled and real (trace-
based) workloads to generate the test workloads. Each workload was submitted in the normal DAS working
environment, thus being influenced by the background load generated by other DAS users. Some jobs could
not finish in the time for which they requested resources, and were stopped automatically by the Koala
scheduler. This situation corresponds to users under-estimating applications’ runtimes. Each workload ran
between the submission start time and 20 minutes after the submission of the last job. Thus, some jobs did
not run, as not enough free resources were available during the time between their submission and the end
of the workload run. This situation is typical for real working environments, and being able to run and stop
the workload according to the user specifications shows some of the capabilities of GrenchMark.

6 The results

This section presents the results obtained with GrenchMark. The experiments are not gauged to show a
full analysis of a certain feature; instead, we try to show how GrenchMark can be used for various goals.
The major difference between the two approaches is in the way results are analyzed, due to the difference
in goals; e.g., in Table 2 we show a summary of runtimes for three applications (performance testing),
but not the detailed analysis required for the complete performance characterization of these applications
(performance analysis).

Unless otherwise stated, we use the success rate of the jobs as the performance metric for our experiments.
The reason is twofold: we find that for current grids the ability to reliably run jobs is even more important
than raw performance, and we argue (based on the results shown in Table 2) that GrenchMark results
can also be used to extract other metrics (from the many available, see for instance [7]). A successful job is
a job that acquires its requested resources, runs, finishes, and returns all results within the time allowed for
the workload.

6.1 Grid system analysis

This section shows how GrenchMark can be used for two types of system analysis: performance testing
(and analysis), and what-if analysis.

5Distributed ASCI Supercomputer, http://www.cs.vu.nl/das2/
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Table 1: The experimental results for performance testing.
# of Component Success

Workload Applications types CPUs number size Rate
gmark1 synthetic, sequential 1 1 1 97%
smpi1 synthetic, MPI 2-128 1-15 1-32 81%
ibis1 N Queens, Ibis 2-16 1-8 2-16 70%

Table 2: A summary of time and run/success percentages for different job types.
Job Job Turnaround [s] Runtime [s] Run+

name type Avg Range Avg Range Run Success
sser seq 129 16–926 44 1–588 100% 97%
smpi1 MPI 332 21–1078 110 1–332 80% 81%
NQueens Ibis 99 15–1835 31 1–201 70% 85%

6.1.1 Performance testing

We consider a performance testing case in which the user wants to test the performance of one or more of
his applications. This situation occurs when developing an application, when testing one or more system
design options. In all of these situations, the user wants to generate the workload with as little input as
possible, submit the generated workloads, and have a detailed report on the obtained results within a certain
time-frame.

Table 1 shows the structure of the three generated workloads, and the detailed success rate for running
them. We use three types of applications: sser (synthetic sequential), smpi1 (synthetic parallel, MPI), and
an N Queens solver (synthetic parallel, Ibis). Each generated workload contains one application type, and
comprises 100 different instances. For synthetic applications, we used combinations of parameters that would
keep the run-time of the applications under 30 minutes, under optimal conditions. For the Ibis jobs (workload
ibis1), 10-20% of the applications have severely underestimated runtime requests; this corresponds to the
situation where some users severely underestimate the runtimes of complex applications [15]. Each job
requests resources for a time below 15 minutes. The combination of run-time and resource request settings
ensures that some applications would fail due to the user’s own fault. The total submission time of any
workload is kept under two hours, to show how GrenchMark can be used in a time-constrained test
situation. To satisfy typical grid situations, jobs request resources for 1 to 15 components. As the DAS has
only 5 sites, jobs with more than 5 components will have several components running at the same site. For
parallel jobs, there is a preference for 2 and 4 components. For multi-component jobs there is a preference for
2, 4, and 16 processors. Various inter-arrival time distributions are used to generate the submission time of
workload jobs. Component requests are either fixed (specifying the name of a grid site) or nonfixed (leaving
the scheduler to decide).

The lower performance of parallel jobs (workloads smpi1 and ibis1) when compared to one-processor
jobs (workload gmark1), is caused by the parallel jobs need to allocate resource sets, as opposed to allocating
single resources. Ibis jobs also suffer from the small time limit coupled with inaccurate estimations.

The turnaround time of an application can vary greatly (see Table 2), due to different parameter settings,
or to varying system load. The variations in the application runtimes are due to different parameter settings.
As expected, the percentage of the applications that are actually run (Table 2, column Run) depends heavily
on the job size and system load. The success rate of jobs that did run shows little variation (Table 2, column
Run+Success).

6.1.2 What-if analysis

We consider three use cases for illustrating GrenchMark’s capabilities for what-if analysis : system change,
grid inter-operability, and special situations. In the first two cases we assume that the environments under
scrutiny have been thoroughly studied and their workloads modeled.

First, we consider the case where a testing environment would be placed under (much) more strain. Our
testing environment, the DAS system, has actually hot-swapped its resource manager, because it could not
cope with the increasing number of job submissions. The work of all the DAS community was negatively
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Table 3: The results for the first case of what if analysis.
Submit rate # of Job size Submit

Workload vs. original jobs (# of CPUs) Errors
DAS2-FS3-1x 1x 14 1-50 0%
DAS2-FS3-10x 10x 71 1-50 0%
DAS2-FS3-25x 25x 102 1-50 4%
DAS2-FS3-50x 50x 426 1-50 24%
DAS2-FS3-100x 100x 739 1-50 41%

Table 4: The results for the second case of what if analysis.
Workload (the PWA index # of Component Success
is given in paranthesis) jobs no. size Rate
DAS2-FS3 (15) + OSC (10) 1103 1-4 1-32 76%
DAS2-FS3 (15) + CTC (4) 863 1-8 1-10 70%
DAS2-FS3 (15) + SDSC’96 (3) 873 1-8 1-32 77%

affected for a period of two weeks. Such a change could have been prevented if the question What if the
current users would submit 10 times more jobs in the same amount of time? Or 50 times, or 100 times...
would have been answered at the system installation, or during a quiet period. Furthermore, the project
sponsoring this research (see Acknowledgements) has as its main objective making the DAS infrastructure
easily available to the Dutch academics, and requires this what-if question to be answered before the new
settings are released to the public. We take a thoroughly studied trace [9] of the DAS system and re-run
it in the new environment. The trace was recorded when the previous resource manager was still in place,
and contains over 425,000 jobs run throughout 2003. To limit the testing period, we consider only the jobs
submitted to one of the five DAS clusters (over 65,000), limit the workloads to at most 1000 jobs, and ensure
that the resulting workloads have a submission span of maximum three hours. All these requirements were
met through the workload definition language; no tool external to GrenchMark, e.g., MySQL, was used.
We also scale the jobs submission times to make them 10, 25, 50, and 100 times smaller than the original
submission times. Table 3 details the filtered and scaled traces and shows the percentage of the submit errors,
from the total number of submitted jobs. We conclude that the new resource management system (including
Koala) can handle an up to 10 times increase in the submission rate, for the user base characterized by the
input traces.

Second, we consider the case where our testing environment would also be used by the users of another
environment and we want to find out what is the success rate of the jobs submitted by these combined
communities?. This situation occurs when from two existing production environments one environment is
put temporarily or permanently out of production, and only one environment remains to run the submissions
of jobs from both user communities. For the extended use case in which two environments share their
resources, suffices for the user to run the generated workload on both systems at the same time; for this
purpose, GrenchMark allows a generated workload to be accurately replayed on different systems (even if
those systems are simulated). We took the same trace as in the first what-if analysis case, and combined it
with either of the OSC, the CTC, or the SDSC’96 traces from the Parallel Workloads Archive (PWA). We
selected just the jobs with runtimes below 900 seconds. We define a trace job set as a set consecutive jobs
from a trace for which the submission interval is 3 hours. To solve the problem of not selecting the most
demanding, nor the least demanding trace job set, we first select the top 100 sets, sorted by their number of
jobs (size). Then, we compute the average number of jobs for the top 100 sets, and we choose the set whose
size is the closest to this average. Table 4 shows the detailed structure of the generated workloads, and the
success rate for running them. The observed success rate was above 70% for all tests. We conclude that
the new DAS (including Koala) can handle the proposed combinations of communities, with a reasonable
success rate for submitted jobs.

Third, we consider the case where the user wants to test the outcome of the system being suddenly subjected
to a large number of submitted jobs (bursts). Using workloads based on synthetic applications, we generated
two bursts, and for each a background load, filling 25% and 5% of the system’s capacity, respectively. During
the tests, the background load generated by other users was between 0% and 5%. We restrict our tests to
one of the DAS clusters (fs4). Figure 5 shows the system utilization graph during the period when the
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Figure 5: The utilization of the DAS fs4 cluster for bursty submissions.

Table 5: The results for system functionality testing.
Types of # of Component Success

Workload applications CPUs no. size Rate
gmark+ synthetic, seq. & MPI 1-128 1-15 1-32 85%
ibis+ various, Ibis 2-32 1-8 2-16 65%
unitary gmark+ & ibis+ 1-32 1-8 1-32 90%

two burst workloads are submitted. The system performed correctly under strain; the maximum system
utilization is 95%, of which 90% is generated by the burst workloads. Two spikes can be clearly identified
on the utilization graph. As expected, running the first burst workload (spike 1) takes longer, due to the
higher background utilization of the system.

6.2 Functionality testing in grid environments

This section presents two cases for showing how GrenchMark can be used for functionality testing : system
functionality testing, and periodic system testing.

6.2.1 System functionality testing

We consider the case where the user wants to test the system’s capability to reliably run various types of jobs
at the same time. We combine the workloads used in the case of performance testing and obtained mixed
workloads. Table 5 displays the composition of the two experimental workloads, and the success rates for
their execution. The gmark+ workload comprises a mix of parallel and sequential synthetic applications also
used in workloads gmark1 and smpi1 (see Table 1). As expected, the success rate of gmark+ is lower than
for gmark1, but higher than for smpi1. The success rate fluctuates with the number of smpi1 jobs: the
lower this number, the lower the failure rate (sequential jobs are more stable). The same considerations can
be applied for the ibis+ and unitary workloads. For the ibis+ workload, the success rate is 15% lower
than normal due to severe runtime underestimations (see also Section 6.1.1). We conclude that the DAS
and Koala can reliably run the GrenchMark jobs.

6.2.2 Periodic system testing

We consider a case where the user wants to periodically test a system. This type of testing helps identifying
system problems, or can be used for obtaining the current performance of various system components. We
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Table 6: Results of the comparison of success rates for single-site vs. co-allocated jobs.
Types of # of Component Success

Workload applications CPUs no. size Rate
single-site synthetic, MPI 2-32 1 2-32 98%
coallocated synthetic, MPI 2-32 1-8 1-16 77%
coallocated+ synthetic, MPI 2-128 1-15 1-16 71%

Table 7: Comparison of success rates for unitary vs. composite jobs with or without execution fault tolerance.
# of Jobs/ Success rate when fault tolerance is

Workload Sub-Jobs ON OFF
unitary 100/100 90% 100%
composite 10/108 70-90% 100%

scheduled a set of simple test workloads for daily submission, from various DAS gateways. This helped
to quickly identify and solve a critical deployment problem: the configuration file of Koala on one of the
gateways was incorrect and caused the submission test to fail; if left uncorrected, users submitting jobs from
that gateway would have been unable to submit some of their jobs through that gateway.

6.3 Comparing grid settings

This section presents two situations in which GrenchMark can be used for comparing grid settings.

6.3.1 Single site vs. co-allocated jobs

We consider a comparison between the success rates of single-site and co-allocated jobs in a grid environment
without reservation capabilities. We devised three workloads, one with single-site jobs, one with the same jobs
co-allocated at various sites, and one with larger jobs co-allocated at various sites. Table 6 shows the detailed
structure and the success rate for the three workloads. The single-site jobs (workload single-site) have
a higher success rate than co-allocated jobs (workloads coallocated and coallocated+), in this case by
over 20%. This is due to the atomic reservation problems of co-allocation: local users can acquire resources
selected for co-allocation just before they are claimed by the co-allocating scheduler. Since the average load
in the DAS system is low (e.g., below 25% [9]), small and large co-allocated jobs have almost the same
success rate (enough machines are available).

6.3.2 Unitary vs. composite jobs

We consider a comparison between the success rate of unitary and composite applications in a grid environ-
ment without reservation capabilities, and with or without fault tolerance. We considered only DAG-based
composite applications for which the sub-jobs are unitary applications. We define a job that can run as a
job for which all its dependencies have been met. Since Koala does not support the execution of composite
jobs, we built a simple execution tool, which executes jobs that can run as soon as possible. The execution
tool also allows for flexible fault tolerance schemes; we use here a simple retry failed mechanism with sub-job
granularity. For different workflow types, execution tools, and mechanisms, we refer to [16]. Table 7 shows
the success rate for unitary and composite jobs, with or without fault tolerance. Without fault tolerance, the
success rate of composite jobs drops dramatically if the first sub-jobs in the DAG’s topological sort fail. With
fault tolerance, for a system with a high success rate for jobs, e.g., the DAS, the simple retry mechanism
yields complete reliability in running correct jobs.

7 Related work

A significant number of projects have tried to tackle the Grid performance assessment problem from different
angles: modeling workloads and simulating their run under various environment assumptions [15, 5, 3],
attempting to produce a representative set of grid applications like the NAS Grid Benchmarks [8], creating
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synthetic applications that can assess the status of grid services like the GRASP project [4], and creating
tools for launching benchmarks and reporting results like the GridBench project [13]. GrenchMark is
the natural complement to these approaches, by offering a much larger application base, more advanced
workload modeling features, and the ability to replay existing workload traces. In addition, GrenchMark
can be used for much more than just Grid performance evaluation (see Section 6).

The modeling/simulation approach is almost exclusively based on traces which are now part of the Parallel
Workloads Archive. The major hurdle for this approach is to prove the representativeness of simulation
results for real grid environments.

In [8], the authors propose a small set of parallel applications as Grid benchmarks. Simple workloads
are defined for the applications, in that the running parameters and the order in which the applications are
to be run are fixed. The drawbacks of this approach are that the applications are only representative for a
restricted research area (here, computational fluid dynamics), make very little use of Grid components (only
Grid-enabled MPI and a scheduler), and cannot adapt to the dynamic behavior of Grids (they require fixed
resource sizes, and have no fault-tolerance, migration, or check-pointing features).

In [4], a small set of applications are specifically designed to test specific aspects of Grids functionality
(probes). The applications assume the existence of common Grid components, like a global information
system, or a file-transferring service. No attempt to form workloads with these applications is made.

In [13], a benchmark launching tool is proposed. This tool has the ability to launch benchmarks and
display their results, and can be coupled with many of the existing HPC benchmarks. However, it has very
limited workload modeling features, and cannot replay real traces.

8 Conclusion and future work

This paper has presented GrenchMark, a framework for synthetic grid workloads generation and submis-
sion. The framework supports various workload modeling primitives, comes with over 35 synthetic and real
applications, and is portable, flexible, and extensible. We have designed and implemented GrenchMark,
and have deployed it in the DAS, our 400-processors grid environment.

We have shown evidence that GrenchMark can be successfully used for grid system analysis, func-
tionality testing in grid environments, and comparing different grid settings. We have presented various
examples of how GrenchMark can be used for performance tests, what-if analysis, system functionality
tests, periodic system tests, a single vs. co-allocated jobs comparison, and a unitary vs. composite jobs
comparison. We have shown how these tests can be extended for different goals than those of this paper,
e.g., other performance metrics and other types of tests. Last, but certainly not least, GrenchMark was
instrumental in making the Koala grid scheduler reliable on the DAS, and releasing it for the DAS user
community.

We are currently extending GrenchMark with support for malleable jobs. For the future, we plan to
use GrenchMark for testing and comparing more grid settings, both in simulations and real situations.

Availability

The official GrenchMark web site, including documentation and a freely available distribution, is located
at: http://grenchmark.st.ewi.tudelft.nl/.
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